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ABSTRACT

The use of neural networks for signal vs. background discrimination in
high-energy physics experiment has been investigated and has compared
favorably with the efficiency of traditional kinematic cuts. Recent work in
top quark identification produced a neural network that, for a given top
quark mass, yielded a higher signal to background ratio in Monte Carlo
simulation than a corresponding set of conventional cuts. In this article we
discuss another pattern-recognition algorithm, the binary decision tree. We
have applied a binary decision tree to top quark identification at the Teva-
tron and found it to be comparable in performance to the neural network.
Furthermore, reservations about the “black box” nature of neural network
discriminators do not apply to binary decision trees; a binary decision tree
may be reduced to a set of kinematic cuts subject to conventional error
analysis.
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1. Introduction

Neural networks have been proposed as an adjunct to or even replacement for cuts tradi-

tionally employed to separate signal from background in high-energy experiments.1 Cer-

tainly the development of a powerful, general training algorithm for non-recursive neural

networks2 has established the forward-feed, back-propagation neural network as an impor-

tant tool for pattern recognition, both in artificial intelligence and industrial applications. *

A neural network can be trained to distinguish “signal” events from “background” events

in a high-energy collider, differentiating between the two on the basis of kinematical vari-

ables such as angular separation, missing transverse energy /ET , etc. One of us (D.L.D)

has investigated the use of a neural network trigger at the Tevatron for separating the top

quark signal of one lepton plus jets from the strong W -boson plus multi-jet background.3

Among the results of this work was a neural network that for a given top quark mass

obtained a higher signal to background ratio than a corresponding set of conventional cuts

in Monte Carlo simulation.4

There exist reservations, however, about the use of neural network triggers in collid-

ers. The architecture of the neural network responsible for its success in a wide range of

pattern-recognition problems precludes straightforward error analysis, in contrast to the

situation with simple kinematic cuts. Thus we have considered another pattern-recognition

algorithm, the binary decision tree, and compared its performance with that of the neural

network in the top quark detection problem of Ref. 3. In this particular case, the binary

decision tree does about as well as the neural network solely on the basis of the respective

increases in signal to background. The binary decision tree, however, may be reduced to a

set of conventional kinematic cuts, and is subject therefore to the usual error propagation

techniques.

Section 2 outlines the algorithm behind the binary decision tree, which is essentially

an automated (and optimized) search for the series of kinematic cuts that will best isolate

high signal percentage regions in phase space. A review of neural networks follows, both

as background for the subsequent discussion comparing the two methods and to elucidate

* See the IEEE proceedings on neural networks of any year, for example.
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difficulties encountered in the error analysis of a neural network trigger. Finally, we ex-

amine the differences between the neural network and binary decision tree and present the

results of application of the binary decision tree to top quark identification.

2. Binary Decision Trees

In its simplest form, a signal trigger attempts to correctly classify events as signal or

background by means of a linear inequality:

N
∑

i=1

aixi > b, (2.1)

where the xi are the kinematical variables measured for each event that serve as input to

the trigger. Given the xi measured for an event, the trigger accepts the event if, say, the

condition of Eq. (2.1) is satisfied, and rejects it otherwise. Of course, a single cut rarely

suffices to reduce a strongly predominant background, so that triggers usually comprise

several individual cuts administered jointly. A straightforward and common approach to

obtaining cuts is to restrict the form of Eq. (2.1) by setting all the ai except one, ai0, to zero,

so that b represents either the minimum or maximum value of xi0 allowed for an event to

be accepted by the trigger. By plotting the distributions in xi0 for signal and background,

b can be chosen to maximize the expected signal to background ratio of accepted events.

Such cuts may be formulated for each of the coordinates xi and combined to form a set of

N simultaneous conditions for event acceptance. Though one might suspect cuts of this

form to lack the power of the generalized inequality expressed by Eq. (2.1), obtaining such

an improved cut is rarely possible since difficulties associated with the construction (and

interpretation) of higher dimension plots and histograms usually limit the use of more than

one non-zero ai to instances in which all non-zero ai are equal (e.g., a cut on total lepton

transverse momenta pT ).

The aim of the binary decision tree presented here is to enable and optimize the choice

of such generalized cuts and thus to formulate event discriminators of higher efficiency

than those derived through standard methods. The basic algorithm is easily understood

by considering Eq. (2.1) geometrically; the inequality defines an N -dimensional hyperplane

that divides the phase space in two. Points on one side of the plane are classified as

signal and points on the other as background. If the ai are normalized, they define the
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normal to the hyperplane, with b signifying the normal distance between the plane and

origin. The centroids of the signal and background distributions, xs and xb, are points

in this N -dimensional space that if not coincident define the binary decision tree’s initial

generalized cut as the hyperplane midway between xs and xb, perpendicular to their unit

separation vector d. Thus the ai are identified with the components of d and b is (modulo

a possible sign) equal to half the distance between the two points. The cut partitions

phase space into two pieces, one of which is guaranteed to have at least as high a signal

to background ratio as the parent (pre-cut) distribution. If this piece is deemed to have

a sufficiently high expected signal to background ratio or if further cuts would overly

reduce the signal acceptance rate, division halts. Otherwise, it is successively divided

by generalized cuts as described above. The end result is a series of simultaneous cuts

that delimit a subregion of accepted events. Furthermore, at each division the piece with

the lower signal to background ratio need not be discarded; cuts may be applied to it as

well, with the aim of gaining additional pockets of signal. The hierarchy of cuts and the

partition of phase space into “signal” and “background” regions make up the definition of

the binary decision tree. ‡ The recursive selection of hyperplanes (i.e., determination of a

set of ai and b) is denoted as the “training” of the binary decision tree, which is binary

because at each step intermediate regions (nodes) are divided into two branches. The

terminal regions are the “leaves” of the binary decision tree, and are classified as signal or

background according to the percentage of signal present. The hyperplanes thus defined

may be used exactly as the simpler conventional cuts to implement an equivalent trigger.

In practice, the signal and background distribution functions of xi are represented

efficiently (but with limited accuracy) by sets of signal and background events, respectively

ΩS and ΩB, generated by Monte Carlo simulation. Note that while quantities such as the

percentage of signal events on one side of a hyperplane are estimated by a count of events

in ΩS and ΩB that fall on that side, even if one had an overall signal to background ratio

of 10−6 we would not require 106 times more background than signal events for training.

‡ The binary decision tree presented here is based on both the work of P. Burchard with

B. Merriman (Ref. 5) and that of R.P. Brent. With the exception of the scaling factor K,

the algorithm for optimizing hyperplanes is defined in Ref. 6
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Given an equal number of signal and background events, we could simply scale any count

of background events by the factor of 106.

There are limitations, however, that arise from working with finite-size “training”

sets; a hyperplane as constructed above may be considered unsatisfactory for a number of

reasons, all related to expected statistical error present in the training distributions. The

hyperplane, for example, might leave one side with an apparently high signal percentage

but so few signal events as to render such a cut unreliable. For this reason it is prudent

to consider other candidate hyperplanes, such as the simplified hyperplanes corresponding

to traditional cuts that lie parallel to all but one axis. A cost function Q, used to evaluate

the desirability and/or reliability of a cut, is required to decide among the candidate

hyperplanes. We employed two different cost functions, one of which, drawn from Ref. 6,

measures the “entropy” produced by a candidate hyperplane and is given by:

Q(Sl, Bl, Sr, Br) = − log

(

Sl! Bl! Sr! Br!

(Sl + Bl)! (Sr + Br)!

)

, (2.2)

where Sl and Br are, respectively, the (possibly scaled) number of signal events on the

side of the hyperplane arbitrarily designated as “left,” and the (possibly scaled) number

of background events on the other side.

Q is an implicit function of the hyperplane coordinates {ai, b} through {Sl, Bl, Sr, Br}.

For an ideal hyperplane in which Sr = Bl = 0, Q takes on its minimum value of zero.

By selecting the hyperplane in a given set of candidate hyperplanes with the smallest

value of Q, the current subregion of phase space is divided into two branches, each with

a signal fraction as far away from 0.5 as possible. Note that maximizing the difference

between the signal fractions and 0.5 does not necessarily correspond to maximizing the

signal fractions themselves. To bias the binary decision tree more towards the latter

strategy, we alternatively used the following cost function:

Q(Sl, Bl, Sr, Br) = 2 −

(

Sl

Sl + Bl

)n

−

(

Sr

Sr + Br

)n

. (2.3)

The binary decision trees discussed in Section 4 have n set equal to 2, which produces a

bias toward hyperplanes which create one branch with a higher signal to background ratio.

Both cost functions require additional constraints to prevent creation of leaves that,

although apparently high in signal percentage, have so few events as to render them sta-

tistically meaningless. We implement these constraints by substituting the true value of
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Q for unacceptable hyperplanes with a large positive constant, which thus leads to their

rejection.

Aside from its use in selecting between candidate hyperplanes, the cost function Q

makes possible the optimization of a candidate hyperplane. Rotating and translating the

hyperplane, by modifying the ai and b respectively, shifts events from one side of the hy-

perplane to the other, increasing or decreasing Sl, Br, etc., and thus Q = Q(Sl, Bl, Sr, Br)

as well. Continuous or discrete optimization may be carried out to minimize Q by appro-

priately adjusting ai and b. If the training sets are sufficiently large to permit interpolation

of sorts, continuous optimization is preferable to a discrete algorithm. Following the pre-

scription of Ref. 6, Q can be transformed into an analytic function of the hyperplane

coordinates {ai, b} by means of the following approximations of Sl and Br:

Sl = Sl(ai, b)

=
∑

xi∈ΩS

1

2

[

1 + tanh

(

1

T

(

N
∑

i=1

aixi − b

))]

Br = Sr(ai, b)

=
∑

xi∈ΩB

1

2

[

1 − tanh

(

1

T

(

N
∑

i=1

aixi − b

))]

, (2.4)

with analogous subtitutions made for Sr and Bl. To simulate the pre-cut signal to back-

ground ratio for training purposes, we furthermore modified Eq. (2.4) by Bl → KBl,

Br → KBr, where the scaling factor K is

K =

(

S

B

)

train

(

S

B

)

−1

actual

. (2.5)

The first ratio is simply that of the number of signal events used in training to that of

background events, and the second is the theoretically or experimentally known value of

the pre-cut signal to background ratio. As the temperature parameter T → 0, the first

line of Eq. (2.4) estimates the number of events in the signal set ΩS that fall on the side

arbitrarily designated as the “left”, while the second line with an oppositely signed tanh

term (and multiplied by the factor K) gives an approximate scaled count of background

events on the right side. With these differentiable approximations of Sl, Bl, Sr, and Br,

Q itself becomes a differentiable function of ai and b. To minimize Q and simultaneously
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optimize the hyperplane, we employed the Polak-Ribiere algorithm for conjugate gradient

minimization.7 As with the exact form of Q, to take into account the limited size and

accuracy of the training sets, we substituted the value of Q computed from Eqs. (2.2) or

(2.3) with a large positive constant if, for example, a candidate hyperplane would leave

either created branch with less than a user-defined minimum of events.

Finally, we remark that by restricting hyperplanes to lie along coordinate axes as in

simplified cuts (by requiring all ai but one, ai0 , to be equal to zero) and by replacing

the (N + 1)-dimensional optimization of {ai, b} with a line optimization of b alone, the

resulting algorithm is that of the k-d tree.8 This type of decision tree has in fact already

obtained successful results in high-energy physics, having been employed in Mark II and

Mark III to discriminate between electrons and pions.9 The k-d tree demands less cpu time

for training than the binary decision tree discussed in Section 4 at the cost of a generally

larger number of hyperplanes required for comparable performance.

3. Neural Networks

This Section provides only the detail necessary to give some perspective on the differences

between neural networks, binary decision trees, and more conventional methods of sep-

arating signal from background. A more complete introduction to neural networks may

be found in Ref. 3 and the references therein. Consideration here is limited to the neural

network architecture/training method most commonly used in pattern recognition with

supervised training, the forward-feed back-propagation neural network.

The neural network is parameterized by a set of weights ω
(L)
ji that connect the nodes yj

of layer L with the nodes yi of the preceeding layer L− 1. Each training event is assigned

a numerical classification according to background=0, signal= 1. Training the neural

network consists of a gradient descent optimization of the weights to minimize the squared

difference of the classification of each event and the neural network function f evaluated

at the event’s coordinates xi. The sum of this “quadratic error” over the training sets ΩS

and ΩB is the network equivalent of the cost function Q used by the binary decision tree.

The neural network function f for an architecture of M layers and N (L) nodes in layer L
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is given as

f(xi) = y(M)
(

y(M−1)
)

, (3.1)

with the functions y(L) defined recursively,

y
(L)
j

(

y(L−1)
)

=
1

2



1 + tanh





1

T

N(L−1)
∑

i=1

ω
(L)
ji yL−1

i







 , (3.2)

and for

y
(1)
i = xi,

L = 1, . . . , M,

N (M) = 1,

N (1) = N.

Note that the neural network function f is a differentiable function of the weights.

In order to train a neural network, the sets ΩS and ΩB must have a relative size

approximately equal to the theoretical signal to background ratio (in contrast with the case

of binary decision tree training if the scaling parameter K is used), because in practice,

stochastic gradient descent is substituted for classical gradient descent. In training with

stochastic gradient descent, a single event is chosen at random from ΩS or ΩB, f and its

derivatives with respect to the weights are calculated, and the weights ω
(L)
ji are immediately

rotated by a small amount toward the “downhill” direction of the quadratic error function.

This process is repeated for all training events in random order and for many cycles. In

this way, the weights gradually and smoothly move toward an optimal classification of the

entire training with much more modest computational demands than if classical gradient

descent were employed. In the latter case, however, because the order of presentation of

events does not matter (since weights are updated only after presentation of the entire

set), one can “scale” ΩB as necessary by multiplying each background event’s contribution

to the quadratic error function by the factor K defined in Eq. (2.5). Training however,

requires much more computational time than the classical gradient algorithm.

After successful training, the neural network function f should take on values greater

than 1
2 for signal events and less than 1

2 for background. In deriving a trigger from such a

neural network, one has the freedom to specify the threshhold value f(xi) = θ for an event
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to be classified as signal. As θ → 1, the accepted events should increase in signal purity

and decrease in signal efficiency.

4. Results

In this section we present our results for the binary decision tree performance in comparison

with that of the neural network of Ref. 3 in obtaining a ratio of signal to background events

in the particular application of top quark identification via the one-lepton channel at the

Tevatron.

The training and testing event sets ΩS and ΩB are the same as those used in Ref. 3

for which top quark production and the relevant background are simulated by the Monte

Carlo event generator PYTHIA10 at pp̄ center of mass energy 1.8 TeV. We consider here

a top quark mass of both 100 and 140 GeV. The W -boson plus multijet background is

also generated by PYTHIA from qq̄ → Wg and qg → Wq subprocesses. We reproduce

the acceptance cuts applied to each event so generated; further details of the simulation

of training and testing sets are found in Ref. 3: a) one and only electron- or muon-type

charged lepton of pT > 20 GeV and pseudorapidity |η| < 3.0, b) 3 or more hadronic

jets, each of energy 15 GeV and pseudorapidity |η| < 2.5, for jet cone size defined to be

∆r = 0.7, c) total missing energy /ET > 20 GeV, and d) lepton isolation such that the sum

of hadronic energy within a cone of size ∆r = 0.4 centered about the lepton momentum is

less than 3 GeV.

A number of parameters were used in the construction of the binary decision trees to

specify criteria for the classification and division of nodes. Division was halted at a node

if: a) it contained less than MINS+B signal plus (scaled) background events (1–50)*, b) it

contained less than THRESHOLDS+B total events (10–10000) with a background event

fraction higher than MAXB/(S+B) (0.90–0.99), c) it possessed a sufficiently high signal

event fraction MINS/(S+B) (0.50–0.93), or d) all attempts at division would result in either

the left or right branch being less than MINL/(L+R) (0.0001) of the parent node. A node

thus terminated would be classified as a signal leaf if it contained at least MINS (10–300)

* For illustrative purposes, the value/range of each parameter used in training the binary

decision trees for the mt=140 GeV signal are indicated in parentheses.
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signal events, and as a background leaf otherwise. The optimization process was controlled

by the choice of the temperature T (0.0001–10) and the minimum fractional reduction

(0.05) required for continued iterations of the conjugate gradient descent algorithm.

A group of binary decision trees was generated for each top quark mass by varying the

above parameters. A set of triggers covering a range of signal to background ratios and

signal efficiencies was thus obtained. Each binary decision tree was trained and tested on

the same sets ΩS and ΩB used in Ref. 3. For the mt=100 GeV, ΩS consisted of 4500 points

and ΩB contained 5500, while for mt=140 GeV, ΩS had 1500 points and ΩB had 8500.

Note that the relative sizes of ΩS and ΩB approximated the respective signal to background

ratios of 0.77 and 0.19 for the 100 and 140 GeV top quark mass, respectively. All binary

decision trees were subsequently tested on sets of 2500 signal and 2500 background points.

Figure 1 shows the best results obtained for the binary decision trees to recognize the

top quark signal for mt=140 GeV. The efficiencies plotted are simply the percentage of

signal accepted by each trigger. Plotted alongside these data are a single point representing

the “severe” conventional cuts described in Ref. 3 and the results obtained from the neural

network trained with the same ΩS and ΩB. The latter set of points was produced by

setting the neural network-derived trigger threshold θ to {0, 0.1, 0.2, . . . , 1}. The binary

decision tree triggers more or less match their neural network counterpart, though we were

unable to reproduce points with extremely high efficiency (but correspondingly low signal

to background ratios). A similar result is apparent from Figure 2, for mt=100 GeV, which

can be attributed to the fact that despite the similarity of Eqs. (2.4) and (3.2), a neural

network of at least 4 layers partitions space in a very different fashion from the binary

decision tree (a neural network with only M = 3 layers —the minimum possible — is

functionally identical to a binary decision tree with only two leaves.) Regions identified

by the neural network as signal are precisely those signal and background events for which

f(xi) ≥ θ. Examination of Eq. (3.2) reveals that if M ≥ 4, the boundaries of these regions

are complex curved surfaces arising from inverting two or more recursive tanh functions.

Regions classified as signal by a binary decision tree, on the other hand, have hyperplanar

boundaries. Thus the neural network might fare better for lower-efficiency cuts because

the “ideal” partition in these cases would enclose as many signal events as possible within

one contiguous region using a smooth (non-planar) boundary. In the region where the
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trigger signal to background ratio is appreciably enhanced over that of the parent pre-cut

distribution, the binary decision tree essentially matches the performance of the neural

network, and both gain substantial improvement over the “severe” set of conventional cuts

(see Figures 1 and 2). For example, in one of the binary decision trees trained on the

mt=140 GeV data, the initial hyperplane alone managed to partition off a signal region

with the same efficiency (50%) as the conventional cuts but with a signal to background

ratio of 1 instead of 0.65.

Although in this particular application the neural network and binary decision tree

obtained remarkably similar quantitative results, a few interesting qualititative differences

were observed as well. As noted above, a neural network of more than 3 layers divides up

space in a quite complicated way. Even supplied with the weights that define the neural

network, it is in general impossible to derive the boundaries of “signal” regions explicitly,

which makes error analysis of the experimental results from a neural network-derived

trigger quite difficult. By nature of its design, a binary decision tree-derived trigger is

comparatively transparent in its operation, and fully equivalent to conventional simplified

cuts for error analysis purposes. Furthermore, by examining the hyperplane normals of the

trained binary decision tree one may glean information regarding the relative importance

of the kinematic variables xi for discrimination between signal and background in each

subregion of phase space.

The respective training phases of the neural network and the binary decision tree

differ greatly in the computational resources required. Training of the binary decision

trees required anywhere from 5% down to 0.2% of the cpu time used to train the neural

networks of Ref. 3, thus bearing out the observation3 that training time for a neural network

should increase much more rapidly with the addition of layers than that of a comparable

binary decision tree.

The results for the neural network are more stable than those for the binary decision

tree in the sense that variations in the parameters that serve to define the neural network,

such as the temperature and the number of hidden layers (Ref. 3), do not appreciably

change them. The binary decision tree, on the other hand, produced a wide range of

results as parameters such as the minimum signal percentage, MINS/(S+B), were varied.

In this application, in fact, the neural network’s performance was used as a benchmark,
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toward which the binary decision trees were trained. The parameter MINS/(S+B) would

initially be set equal to a given signal percentage attained by the neural network, and

other parameters would be varied in an attempt to match or surpass the neural network’s

efficiency.

Finally, we note here that though not a limitation for this particular application, an

extremely small signal to background ratio would mean that to train a neural network,

one would require a potentially huge Monte Carlo-generated background training set ΩB,

due to the use of stochastic gradient minimization. The binary decision tree, in contrast,

can scale the background set as necessary for any signal to background ratio through K,

so that ΩS and ΩB need only be large enough to represent the theoretical distributions

faithfully and in sufficient detail.
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5. Figure Captions

Figure 1: Results of training binary decision trees to recognize the top quark signal as-

suming mt=140 GeV; data for the corresponding neural network with the threshold θ set

(going from right to left on the graph) to {0, 0.1, 0.2, . . . , 1} is included, as is a single point

representing the “severe” conventional cuts of Ref. 3. The vertical axis gives the expected

signal to background ratio of the derived triggers while the horizontal axis displays the

signal efficiency (the percentage of signal accepted by each trigger).

Figure 2: Results for the binary decision trees, neural network, and set of conventional

cuts for a top quark mass of mt=100 GeV. Note that the leftmost data point for the neural

network was omitted because of insufficient statistics.


